
CEWES MSRC/PET TR/98-41

CEWES MSRC Web-Linked
Database Projects Developed by NPAC

by

Yuping Zhu
David E. Bernholdt

07h00898

Work funded wholly or in part by the DoD High Performance
Computing Modernization Program CEWES
Major Shared Resource Center through

Programming Environment and Training (PET)

Supported by Contract Number: DAHC 94-96-C0002
Nichols Research

Views, opinions, and/or findings contained in this report are those of the author(s) and should not be
construed as an official Department of Defense position, policy, or decision unless so designated by
other official documentation.

1

CEWES MSRC Web-Linked
Database Projects Developed by NPAC

Yuping Zhu, David E. Bernholdt
 [yuzhu,bernhold]@npac.syr.edu

Abstract
This report summarizes two focused efforts with a common theme of coupling commercial
database technology with the world-wide web to facilitate the presentation and management of
large information spaces. The two project titles are “Web-Linked Databases for Domain-Spe-
cific Information Repositories” and “Interfacing Databases and the Web: Management of
Large WWW Sites Using Commercial Database Technology”. Both projects utilize the Oracle7
relational database system, the Oracle Context Option and the Oracle Web Server. The services
provided can be accessed using any standard web browser.

Web-Linked Database For Domain-Specific
Information Repositories

Introduction

This project deals with searching out specific useful information from the large amounts of infor-
mation available on World Wide Web. Along with the growth of Internet, the amount of informa-
tion on the WWW became increasingly large and it’s hard for users to obtain what they want from
the huge volume of information in a way that’s quick, precise and efficient. This project provides
an efficient way for users to locate specific information from the glut of information available on
the web. It is a web search engine which centralizes and indexes information about grid genera-
tion technologies (as used in computational fluid dynamics, structural mechanics, and other
fields). Grid generation expert Joe Thompson of Mississippi State University provided some of
the initial information (URLs of major grid generation WWW sites) used to seed the search
engine.

Components And Implementations

At the highest level, the Grid Search System consists of three parts: Robot, Database and Web
Interface.

2

1. Robot

The robot consists of four parts, as shown in Figure 1.

Given an initial set of URLs, the robot gathers HTML documents from remote web servers by fol-
lowing all links in the original document set. At present, gathering of documents is controlled
simply by limiting the depth to which links will be followed. The current default is a link depth of
4, meaning that documents connected to the initial set by a chain of up to 4 links will be gathered.

1.1 Gather

Thegather subsystem gets the URL to be gathered from the loader (the loader gets the URL from
its queue in the database), then opens a network connection by creating a TCP/IP socket to estab-
lish communication with a specific HTTP web server, and gathers the HTML document from this
web server using the HTTP protocol. Then it parses the document, extracting all links, document
size, last update time, total references, images and forms, etc., and formats the document (to
guarantee correct loading of the document into the database). Then this information and the for-
matted document is appended to a temporary file in order to load into the database later. Any
URLs found in the document are sent to the inspector subsytem by message communication.The
gather subsystem is implemented in C.

1.2 Inspector

The inspector subsystem receives URLs from thegather subsystem and checks that they belong
to the webspace of interest, and that they are not already in the database. If the URL is “valid”, it
is inserted into the “links” queue in the database to be gathered later, otherwise the URL is dis-
carded. When a valid URL refers to a new web server, a signal is also sent to the Robot_Agent.
The inspector subsystem is implemented in Pro*C.

1.3 Loader

The loader manages semaphore and message communication for the system. It passes URLs to
be gathered from the links queue in the database to the gather subsystem, and receives informa-
tion from thegather subsystem (including HTML documents) to be loaded into the database.
This module is implemented in Pro*C.

1.4 Robot_Agent

This module has the simple task of checking the robot_disallowed file on new web servers.It is
implemented in Pro*C.

2. Database

The Database part can be divided into three parts: storage, index and search.

3

2.1 Storage

We use the Oracle7 relational database system to store URLs, documents and other information.
The layout of the table used to store URLs and related data is shown in Table 1. Each URL occu-
pies a row. Table 2 shows the layout of the table used to store documents and their associated data;
each document occupies a row.

Field Data Type

 HOST_ID NUMBER(6)
 PROT VARCHAR2(10)
 HOST VARCHAR2(60)
 PATH VARCHAR2(250)
 OLDPATH VARCHAR2(250)
 FLAG CHAR(1)
 PRIORITY NUMBER(2)
 DEPTH NUMBER(2)
 FID NUMBER(8)

 Table 1. Layout of URL storage table

Field Data Type

 FID NUMBER(8) constraint pk_fid primary key
 STATUS NUMBER(1)
 HOST_ID NUMBER(6)
 PROT VARCHAR2(10)
 HOST1 VARCHAR2(60)
 PATH VARCHAR2(255)
 TIME DATE
 LTIME DATE
 NO_REFS NUMBER(5)
 NO_HTML NUMBER(5)
 NO_IMGS NUMBER(5)
 S_FORM NUMBER(1)
 FSIZE NUMBER(8)
 TITLE VARCHAR2(255)
 SUBJECT VARCHAR(255)
 TEXT LONG

 Table 2. Layout of document storage table.

4

2.2 Index

The index is an optional structure associated with tables and clusters. It provides a faster access
path to table data. Properly used, indexes are a primary means of reducing disk I/O. Indexing is
used at a fairly low level in the Oracle system, so that the presence or absence of an index does not
require changes to any SQL statements, it merely affects the speed of execution.
Indexes are logically and physically independent of the data in the associated table. They can be
created or dropped anytime without any effect on the base tables or other indexes. If an index is
dropped, all applications continue to work. However, access to previously indexed data might be
slower.

Once created, an index is automatically maintained and used by Oracle. Changes to data, such as
inserting new rows, updating rows, or deleting rows, are automatically reflected in all relevant
indices with no additional action by users. The presence of many indexes for a table decreases the
performance of updates, deletes and inserts since the indexes associated with the table must also
be updated.

In order to increase the performance of updating, deleting and inserting to document table, we
adapt batch index mode to the text of a document. That is to say, we index the text of documents
after loading all documents. For those non-text columns we use a real-time index, (e.g. URLs id
and documents id).

We use the Oracle ConText Option to create an index for document text. First, we define a pol-
icy for the text column of the document by calling CTX_DDL.CREATE_POLICY and specify
two required parameters: policy name and fully qualified column name for the policy. The exam-
ple is as shown below:

execute ctx_ddl.create_policy(‘search’,’search.docs.text’)

Here, a policy named SEARCH is created for the TEXT column in the DOCS table owned by
SEARCH.

After that, we create a text index for the text column by calling the CTX_DDL.CREATE_INDEX
procedure. The example is as shown below:

execute ctx_ddl.create_index(‘search’)

2.3 Search

After a text index is created for a column, the ConText Server can process text queries for the col-
umn using the previously defined search policy.

The Oracle ConText Option is an add-on component of the Oracle package. It provides powerful
search, retrieval, and viewing capabilities for text stored in an Oracle database. These capabilities
are implemented in Oracle using a ConText Server process, which complements the usual Oracle

5

Server processes, and a text index, created by ConText Option, for each database column in which
text is stored.

We use the PL/SQL package to implement the queries to the text of documents by calling the
CTX_QUERY.CONTAINS procedure. The example is as shown below:

ctx_query.contains(‘SEARCH’, ‘keyword’, ’QUERY_TEMP’,)

Here, SEARCH is the name of the policy created for the text column, and KEYWORD is the
user’s query expression. A query expression is a combination of query terms (words and phrases)
and components, such as operators, that allow users to specify exactly which documents are to be
retrieved.

There are several search options available for querying text, including:

 a) Exact word or phrase

 b) Associations
 -- Stem of a word or phrase
 -- Fuzzy match of a word or phrase which allows for mis-spelling
 -- Words that sound similar to each other
 -- Words specified as LIKE expressions
 The expansion operators are shown in table 3.

Operator Symbol Description

 STEM $ Expands the list of words to include
 all words having the same stem or
 root word
 FUZZY ? Expands the list of words to include all
 words with similar spelling
 SOUNDEX ! Expands the list of words to include all
 words that sound the same

 Table 3. The expression operators

 c) Proximity
Search for words or phrases that appear close to one another in a document. Documents where the
words or phrases are close together will score higher than those where the terms are farther apart.

 d) Operators
Any of these options can be logically combined. Logical operators combine the terms in a query
expression. All single words and phrases may be combined with logical operators. When query
terms are combined, neither the number of spaces around the logical operator, nor the order of the
query terms is significant, with exception of the MINUS operator(i.e., “A minus B” is different

6

from “B minus A”). All operators are shown in Table 4:

 Operator Symbol Equivalent

 AND & and
 OR | or
 ACCUMULA , accumulate
 MINUS - minus

 Table 4. Logical operators and meaning

CTX_TEMP is the results table created before the query is performed. The result table is always
called the “hit list” table, and it must have the structure illustrated by the Table 5.

 Field Data Type

 TEXTKEY VARCHAR2(64)
 SCORE NUMBER
 CONID NUMBER

 Table 5. The architecture to the query results
 and relative data type

Using the hit list, the grid search system displays the document list page by page, including title,
size, last update time and subject. If the user wants a particular document, he can click on the doc-
ument’s entry in the list using the mouse and the whole document will be displayed with the key-
words are highlighted.

We implemented viewing document in Pro*C by calling the procedure CTX_QUERY.HIGH-
LIGHT. This procedure fetches the document, parses the query, identifies the matching terms and
insert results into the HIGHLIGHT_TEMP table.
The example is shown in the Table 6.

 Field Data Type

 ID NUMBER
 OFFSET NUMBER
 LENGTH NUMBER
 STRENGTH NUMBER

 Table 6. HIGHLIGHT_TEMP table payout

Using the offset and length of the keywords in the document, we form the highlighted version of
the HTML document.

7

3. Web Interface

In the grid search system, we use Oracle WebServer as our search engine’s server. The Oracle
WebServer is a HyperText Transfer Protocol (HTTP) Internet Server with unprecedented database
integration and a powerful development environment. When the WebServer receives a URL from
a browser located either on the World Wide Web or on a local network, it draws on information
from the database and the operating system’s (OS) file system as necessary to respond to the
request. The file system can be used for static (hardcoded) Web pages, or for CGI scripts that do
not access the database, and the database is used for Web pages that are generated at runtime
using “live” data.

One of the important components of the Oracle WebServer is the Web Listener. It receives a URL
from a web browser and sends back the appropriate output. When the Web Listener receives an
URL, it determines whether the request requires the use of a service, accessed through the Web
Request Broker (WRB); a program, accessed through the CGI interface, or whether access to the
file system of the machine on which the Listener resides is sufficient. If WRB access is required,
the Listener passes the request to the WRB Dispatcher for processing; then it returns to the task of
listening for more incoming HTTP requests.

The Dispatcher maintains communication with a pool of processes called WRB Executable
Engines (WRBXs). Each WRBX interfaces to a back-end application using the WRB API. These
applications are called WRB cartridges. The PL/SQL agent is one such cartridge. A WRBX that is
to use the PL/SQL agent immediately connects to the database when it is created and waits for a
request to come in. This enables requests to proceed much more quickly.

The PL/SQL agent executes application code written in PL/SQL and returns the output in HTML
form for the Web Listener to output as a Web page. When a URL is received for the PL/SQL
agent, it contains a Database Connection Descriptor (DCD). The DCD determines both the data-
base access privileges the PL/SQL agent has when executing this request, and the schema (portion
of the database) that it accesses. PL/SQL procedures are stored in the database. The PL/SQL
agent invokes these by issuing commands to the database, which then performs the actual execu-
tion and sends the output and status messages back to the PL/SQL agent.

Based on Oracle WebServer, we provide the user with a web interface for entering the query
string. The user can type any desired search expression . The main Web Interface is shown inFig-
ure 2. After accepting the user’s query string, the interface calls the PL/SQL package through the
PL/SQL agent, and returns the hitlist. The interface is illustrated inFigure 3. Then the user can
click on the document hitlist to view a particular document with the keywords highlighted. This is
illustrated inFigure 4.

8

WWW Sites Management System Using
Commercial Database Technology

Introduction

The purpose of this project is to couple commercial relational database technology with the World
Wide Web (WWW) to make it easier to effectively manage information on WWW sites of large
organization such as the CEWES MSRC. This information management will include obtaining
overview information, such as web page distribution, last update time, number of images and
links, as well as finding “dead links” and “orphaned files”.

Components and Implementation

This prototype Web Site Management System (WSMS) includes a search engine and structural
overview of the site, as well as search capabilities for the structural information. Dead link identi-
fication comes naturally from the structural information, and orphan file identification is imple-
mented using a Perl script to get around the fact that the prototype WSMS is not actually installed
on the site’s web server system.

1. Search Engine

The search engine component of the WSMS is essentially the same as that used for the grid search
engine. Of course it only gathers and indexes the document from one specific web server, and it
does not use link-depth control to limit gathering of the site. The implementation is the same as
that of grid search system and the interface is illustrated inFigure 5.

2. Structural Summary

This component provides the web site summary information for the webmaster. In order to
improve the performance, whenever the database is updated, the web site summary information is
generated from database and stored as a static HTML file. It provides the web information as
shown as below:

-- Total pages:The total number of HTML documents on the web site.
-- Total linked Images:The total number of images linked by documents on the web site.
-- Dead links: The total number of dead links within the web site.
-- Total size:The total size of all documents on the web site.
-- Longest size: The size of the longest document on the web site.
-- Shortest size: The size of the shortest document on the web site.

9

This component is implemented using PL/SQL and the interface is illustrated inFigure 6.

3. Web page distribution structure

For the webmaster, if the web site is big enough, it’s always hard to get a handle on how the doc-
uments are distributed on the web site. This component provides a mechanism for the webmaster
to get such information. It begins with the root directory of the web server and follows all the sub-
directories to display the documents and their structural information. It may be different from the
real file system directory structure on the web site, because it’s based on the information in the
database, which only stores the HTML documents obtained by accessing the site’s HTTP server.
It is implemented using PL/SQL and the interface is illustrated inFigure 7.

4. Web structure information search

Sometimes the webmaster may want to search the information on the web site according to the
document’s structure instead of content (keyword search). An interface is provided to allow the
structural information described above to be searched. Possible queries include: size, last update
time, or number of links or images. This functionality is also implemented using PL/SQL and the
interface is illustrated inFigure 8.

5. Orphan file finder

There are some documents on the web site which can not be referenced by any other document,
we refer to these documents as “orphan files”. Orphan files can not be gathered by the robot, so
they are not stored in the database; they only can be found on the web site’s file system. Our
orphan file finder can be divided into two parts. One part is located on the database side, and gen-
erates the whole document list from the database and stores the list on the database server. It is
implemented using Pro*C. The other part is a Perl script located on the web site host system. It
gets the document list generated by the first part from the remote HTTP server and compares it
with the files in the real file system. Files present on the web site file system, but which are never
referred to by other documents in the site are flagged as orphans. It is important to note that
“orphan files” may in fact be correct in some cases, such as documents referred to by other web
sites, or documents intended for limited distribution.

Conclusions and Future Vision

These two projects demonstrate the ease and power of coupling commercial database technolo-
gies with the world-wide web in working with large information spaces.

The grid search system is representative of focused, domain-specific search engines that can be
easily created using this approach. It allows DoD researchers interested in grids and grid genera-
tion to extract relevant information easily and efficiently from the flood of information now avail-

10

able on the Internet. Search engines for other domains are planned, and there is ample scope to
improve the algorithms used to filter information as the document is being gathered into the data-
base.

The prototype web site management system uses the same basic facilities as does the search
engine to provide a tool to ease the management of large, rapidly changing web sites with many
individuals contributing to the content. When the full system is installed on-site at the CEWES
MSRC, it will be possible to serve the web site from the WSMS. At that point, content providers
will be able to check documents into and out of the WSMS, and a security model will provide for
concepts of ownership, release approval, and staging of documents from private (pre-release)
webspace to public webspace, in addition to the types of support the system already provides to
the webmaster.

While useful in their own right, these projects are also meant to serve as more general exemplars
of the advantages of coupling databases with the WWW. The HPCC community historically has
not made much use of commercial database technology, despite the large volumes of complex
data often arising in their work. We believe that the ability to put an easily accessible web-based
interface onto large databases goes a long way towards lowering the historical barrier to the use of
databases in HPCC, and we will use the search engine and WSMS to promote increased use of
these technologies by DoD researchers.

References

1. Oracle Corp., Oracle7 Server, Release 7.3 Reference, 1996
2. Oracle Corp., Oracle ConText Option Application Developer’s Guide, Release 1.1, 1996
3. Oracle Corp., Oracle WebServer User’s Guide, 1996

11

 Loader

HTTP Server

 Gather

Oracle7

 Database

Inspector

Robot_Agent

HTTP Server

html document

load document
new URL

signal new server

insert URL

set flag

robot disallow

 information

 Figure 1. Grid Robot System

Document

URL

12

 Figure. 2

13

 Figure. 3

14

 Figure. 4

15

Figure. 5

16

Figure. 6

17

Figure. 7

18

Figure. 8

